If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying y2 + 16y + 13 + 0 = 0 Reorder the terms: 13 + 0 + 16y + y2 = 0 Combine like terms: 13 + 0 = 13 13 + 16y + y2 = 0 Solving 13 + 16y + y2 = 0 Solving for variable 'y'. Begin completing the square. Move the constant term to the right: Add '-13' to each side of the equation. 13 + 16y + -13 + y2 = 0 + -13 Reorder the terms: 13 + -13 + 16y + y2 = 0 + -13 Combine like terms: 13 + -13 = 0 0 + 16y + y2 = 0 + -13 16y + y2 = 0 + -13 Combine like terms: 0 + -13 = -13 16y + y2 = -13 The y term is 16y. Take half its coefficient (8). Square it (64) and add it to both sides. Add '64' to each side of the equation. 16y + 64 + y2 = -13 + 64 Reorder the terms: 64 + 16y + y2 = -13 + 64 Combine like terms: -13 + 64 = 51 64 + 16y + y2 = 51 Factor a perfect square on the left side: (y + 8)(y + 8) = 51 Calculate the square root of the right side: 7.141428429 Break this problem into two subproblems by setting (y + 8) equal to 7.141428429 and -7.141428429.Subproblem 1
y + 8 = 7.141428429 Simplifying y + 8 = 7.141428429 Reorder the terms: 8 + y = 7.141428429 Solving 8 + y = 7.141428429 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-8' to each side of the equation. 8 + -8 + y = 7.141428429 + -8 Combine like terms: 8 + -8 = 0 0 + y = 7.141428429 + -8 y = 7.141428429 + -8 Combine like terms: 7.141428429 + -8 = -0.858571571 y = -0.858571571 Simplifying y = -0.858571571Subproblem 2
y + 8 = -7.141428429 Simplifying y + 8 = -7.141428429 Reorder the terms: 8 + y = -7.141428429 Solving 8 + y = -7.141428429 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-8' to each side of the equation. 8 + -8 + y = -7.141428429 + -8 Combine like terms: 8 + -8 = 0 0 + y = -7.141428429 + -8 y = -7.141428429 + -8 Combine like terms: -7.141428429 + -8 = -15.141428429 y = -15.141428429 Simplifying y = -15.141428429Solution
The solution to the problem is based on the solutions from the subproblems. y = {-0.858571571, -15.141428429}
| -2-0.8n= | | g=-20000+3.5h | | x+2=-8-x-3x | | -5/2x+1=41/8+4/5x | | b+b= | | 1762=(25.24x)+598 | | 7x^2-x=10x+6 | | g=4h-(20000+.5h) | | -8(2x+4)=-5(4x+8) | | 7x=7x+1 | | -2-5x-4x=-92 | | 5x^2-3=-51 | | 1.12=3 | | 11x-14=8+10x | | 7x-7-2x=43 | | 4x+1+5x-19=180 | | -2p-4=5 | | 11x-60=84+3x | | 9(x+8)+12=8(x+8)8 | | 4(3x+1.75)=34 | | 3x+5x=67+5 | | 91y=18(5y+12) | | 12X-6=-4X-750 | | 2x+3+6x=75 | | -12X-6=4X-750 | | 9x+20=8x+18 | | 3x+10+4x=6 | | 2+4(x-1)=5(x-1) | | 3-7r=-5r+3-2r | | 5.8=-logx | | g=4h-(12000+.5h) | | 12X+6=4X-750 |